Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Yun-Mei Shi and Wen-Qin Zhang*
Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wqzhang@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.043$
$w R$ factor $=0.094$
Data-to-parameter ratio $=6.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

S, S^{\prime}-(But-2-yne-1,4-diyl)bis(t-cysteine) monohydrate

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, both the (but-2-yne-1,4-diyl)bis(L-cysteine) moieties and the water molecule lie on crystallographic twofold axes. As a result of this symmetry, the two cysteine moieties (zwitterions), which are separated by the linear but-2-yne-1,4-diyl moiety, have exactly the same conformation. The conformation is characterized by the S atoms being anti to carboxyl groups and gauche to the protonated amino groups. There are hydrogen bonds which connect the structure in three dimensions.

Comment

It is widely known that L-cysteine and its derivatives exhibit remarkable bioactivities, which prompted us to synthesize new compounds containing two or more cysteine groups and investigate the relationships between structure and bioactivities. A few compounds containing two cysteine moieties bridged through their S atoms via different hydrocarbon diyls have been reported (Armstrong \& Vigneaud, 1947; Struhar et al., 1975; Hu et al., 1999); however, the crystal structures of these derivatives are rarely studied (Bigoli et al., 1982; Shi et al., 2002). We report herein the crystal structure of a new compound $\quad S, S^{\prime}$-(but-2-yne-1,4-diyl)bis(L-cysteine) monohydrate, (I).

(I)

The trigonal unit cell contains three molecules of (I). The but-2-yne-1,4-diyl group is linear with a $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5$ angle of $178.8(4)^{\circ}$ [symmetry code: (i) $\left.1+x-y, 2-y, \frac{1}{3}-z\right]$. The dihedral angle between the $\mathrm{S} 1 / \mathrm{C} 4 / \mathrm{C} 5$ and $\mathrm{S} 1^{\mathrm{i}} / \mathrm{C} 4^{\mathrm{i}} / \mathrm{C} 5^{\mathrm{i}}$ planes is 30.2 (4) ${ }^{\circ}$. The $\mathrm{C} 5 \equiv \mathrm{C} 5^{\mathrm{i}}$ triple-bond length is 1.191 (7) \AA, which agrees with the value of 1.204 (2) \AA in ethyne (Weast, 19881989) and 1.200 (4) \AA in but-2-yne-1,4-diol (Steiner, 1996). There is little difference in the $\mathrm{C}-\mathrm{S}$ bond lengths $[\mathrm{C} 3-\mathrm{S} 1=$ 1.799 (3) \AA and $\mathrm{C} 4-\mathrm{S} 1=1.816$ (4) \AA] from that in S, S^{\prime}-(but-2-ene-1,4-diyl)bis(L-cysteine) (BEDC; Shi et al., 2002) and L-cysteine (Kerr \& Ashmore, 1973). The C3-S1-C4 angle of $101.25(17)^{\circ}$ is slightly larger than that of 99.05° in dimethyl sulfide (Lide, 1992-1993), and lies between the values of 102.1 (2) and 100.4 (2) ${ }^{\circ}$ found in BEDC (Shi et al., 2002).

The difference in the two $\mathrm{C}-\mathrm{O}$ bond lengths $[\mathrm{O} 1-\mathrm{C} 1=$ 1.225 (4) \AA and $\mathrm{O} 2-\mathrm{C} 1=1.239(4)^{\circ}$] is seemingly caused by the different hydrogen-bonding environments, in which atom O 1 is involved in two hydrogen bonds, while O 2 participates in

Received 9 October 2002 Accepted 20 November 2002 Online 30 November 2002

Figure 1
View of the molecular structure of (I), with 30% probability ellipsoids [symmetry code: (i) $1+x-y, 2-y, \frac{1}{3}-z$].

Figure 2
A section of the trigonal unit-cell contents of (I), viewed along the c axis.
just one ($\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2$) (see Table 2). The same situation is also found in BEDC (Shi et al., 2002) and orthorhombic cysteine (Kerr \& Ashmore, 1973).

The molecular conformation can be described by the position of the S atom, which is gauche to the protonated amino group $\left[\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1=52.1(3)^{\circ}\right]$ and anti to the carboxyl group [$\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1=172.0(2)^{\circ}$], while in BEDC one S atom is anti to the carboxyl group and the other is gauche to it (Shi et al., 2002). A Newman projection clearly shows the conformation of (I) (see Fig. 3).

The packing diagram (Fig. 4) shows the existence of some hydrogen bonds. Two distinct $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are formed from two $\mathrm{N}-\mathrm{H}$ bonds of the protonated amino group and two carboxyl O atoms from two different neighboring molecules, leading to the formation of an eight-membered ring with a water molecule situated inside. The water molecule also produces a hydrogen-bond interaction with the O atom from one of the four neighboring molecules of (I) (Table 2).

Experimental

The title compound was synthesized by a modified literature method (Kalopissis, 1975). Under the protection of nitrogen gas and cooled by an ice bath, a solution of $0.53 \mathrm{~g}(0.0025 \mathrm{~mol})$ of 1,4 -dibromo-2butyne in 5 ml of ethanol was added dropwise to a mixture of 0.88 g $(0.005 \mathrm{~mol})$ of L -cysteine hydrochloride monohydrate, 0.001 mol $\left(1 \mathrm{ml}, 10 \mathrm{~mol} \mathrm{l}^{-1}\right)$ of sodium hydroxide, 5 ml of water and 7.5 ml of ethanol. After that, the reaction mixture was stirred for another 24 h

Figure 3
Newman projection of (I)

Figure 4
Packing diagram of (I), viewed along the a axis. Hydrogen bonds are shown dashed.
at room temperature. The precipitate was washed and recrystallized from water. Pale yellow flakes were obtained with a yield of 37%; m.p. 513-515 K (decomposition); IR (KBr) of (I): $3446(s), 3226(b)$, 2910 (s), 1599 (vs, b), 1501 (s), 1391 (vs), 1333 (s), 1300 (w), 1240 (w), $1169(w), 1069(s), 902(s) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 3.43(4 \mathrm{H}, s), 4.30$ $(2 \mathrm{H}, q), 3.20(2 \mathrm{H}, m), 3.37(2 \mathrm{H}, d d)$ p.p.m. 10 mg of (I) was dissolved in 15 ml of hot distilled water; after cooling and filtration, the solution was kept at room temperature for 60 d to yield single crystals of (I) suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=310.38$
Trigonal, $P 3_{2} 21$
$a=5.3906$ (10) \AA
$c=40.964$ (15) \AA
$V=1030.9(5) \AA^{3}$
$Z=3$
$D_{x}=1.500 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 691

> reflections
$\theta=4.4-26.3^{\circ}$
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.878, T_{\text {max }}=1.000$
4241 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.094$
$S=0.99$
1262 reflections
197 parameters
H atoms treated by a mixture of independent and constrained refinement

1262 independent reflections
1017 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=26.3^{\circ}$
$h=-6 \rightarrow 6$
$k=-6 \rightarrow 6$
$l=-32 \rightarrow 51$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0519 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.89 \mathrm{e}_{\mathrm{C}} \mathrm{\AA}^{-3}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
341 Friedel pairs
Flack parameter $=0.00(16)$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

S1-C3	$1.799(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.545(4)$
$\mathrm{S} 1-\mathrm{C} 4$	$1.816(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.524(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.488(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.459(5)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.225(4)$	$\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$1.191(7)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.239(4)$		
$\mathrm{C} 3-\mathrm{S} 1-\mathrm{C} 4$	$101.25(17)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$109.2(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$126.6(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$109.0(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.4(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	$116.7(2)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$115.9(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{S} 1$	$113.7(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$110.3(3)$	$\mathrm{C}^{\mathrm{i}}-\mathrm{C} 5-\mathrm{C} 4$	$178.9(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$17.3(4)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	$52.1(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-164.3(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	$172.0(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-103.2(3)$	$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 2$	$82.8(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$75.1(3)$	$\mathrm{C} 3-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$	$57.3(3)$

Symmetry code: (i) $1+x-y, 2-y, \frac{1}{3}-z$.

Table 2
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{ii}}$	$0.85(11)$	$1.982(12)$	$2.821(4)$	$169(6)$
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{iii}}$	$0.85(11)$	$2.053(13)$	$2.892(4)$	$169(6)$
$\mathrm{O}^{2} W-\mathrm{H} 1 D \cdots \mathrm{O} 1$	0.90	1.94	$2.820(3)$	166

Symmetry codes: (ii) $x-1, y-1, z$; (iii) $x, y-1, z$.
The unique water H atom was located in a difference Fourier map and refined with riding-model constraints on its position. All other H atoms were positioned in difference Fourier maps. $U_{\text {iso }}$ parameters were constrained for H atoms bonded to C , and refined freely for those attached to N and O ..

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the Foundation for University Key Teacher by the Ministry of Education of China. Preliminary data were measured by Wang Honggen of Nankai University.

References

Armstrong, M. D. \& Vigneaud, V. (1947). J. Biol. Chem. 168, 373-377.
Bigoli, F., Lanfranchi, M., Leporati, E., Nardelli, M. \& Pellinghelli, M. A. (1982). Acta Cryst. B38, 498-502.

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hu, X. B., He, J. Q., Chan, A. S. C., Han, X. X. \& Cheng, J. P. (1999). Tetrahedron Asymmetry, 10, 2685-2689.
Kalopissis, G. \& Manousses, G. (1975). Br. Patent 1397621.
Kerr, K. A. \& Ashmore, J. P. (1973). Acta Cryst. B29, 2124-2127.
Lide, D. R. (1992-1993). Handbook of Chemistry \& Physics, 73rd ed., pp. 9-27, 9-31. Boca Raton: CRC Press Inc.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, Y. M., Gu, F. C., Zhuang, J. P. \& Zhang, W. Q. (2002). Acta Cryst. E58, o975-o977.
Steiner, T. (1996). Acta Cryst. C52, 2885-2887.
Struhar, M., Sirotkova, L. \& Dvorakoa, E. (1975). Chem. Zvesti, 29, 17401744.

Weast, R. C. (1988-1989). Handbook of Chemistry \& Physics, 69th ed., pp. F165. Boca Raton: CRC Press Inc.

